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Transfer-matrix methods are used, in conjunction with finite-size scaling and conformal invariance concepts,
to generate an accurate phase diagram for a two-dimensional square-lattice Ising spin-1/2 magnet, with cou-
plings which are positive along one coordinate axis and negative along the other, in a uniform external field.
Our results indicate that the critical line starts horizontally at the zero-temperature end of the phase boundary,
at variance with the re-entrant behavior predicted in some earlier studies. Estimates of the thermal scaling
exponent are very close to the Ising value yT=1 along the critical line, except near T=0, where strong
crossover effects prevent a reliable analysis.
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I. INTRODUCTION

In this paper, we investigate a square-lattice Ising spin-1/2
system with ferromagnetic �F� and antiferromagnetic �AF�
interactions, in the presence of a uniform magnetic field. The
Hamiltonian is given by

H = − Jx�
i,j

�i,j�i,j+1 + Jy�
i,j

�i,j�i+1,j − H�
i,j

�i,j , �1�

where Jx, Jy �0, and �i,j = �1. Here, all fields, coupling
strengths, and temperatures will be given in units of Jx. At
T=0, H�2Jy, the ground state consists of
alternating�stripes along the x axis, while for larger H all
spins are parallel to the field. A critical line Tc�H� connects
�T=0, H=2Jy� to the zero-field Onsager critical point,
which for Jy =1 is at Tc

0=2 / ln�1+�2�=2.2691853. . .. Since
the ground state does not exhibit macroscopic residual en-
tropy, the transition along Tc�H� is expected �1� to belong to
the Ising universality class for all T�0, similarly, to the
closely connected case of the standard �isotropic� antiferro-
magnet in a uniform field �2–6�.

The problem described by Eq. �1� was treated by Müller-
Hartmann and Zittartz’s interface method �2� in Ref. �7�,
which provides an excellent summary of earlier work. It was
revisited in Ref. �8�, using an approach which considers the
zeros of the partition function on an elementary lattice cycle,
and their connection to the free-energy singularity at the
transition �6�. Remarkably, the critical line found in Ref. �8�
is predicted to display a positive slope close to T=0, so the
critical field reaches a maximum at some nonzero T before
approaching zero at higher temperatures. Similar re-entrant
behavior was predicted upon the application of a Bethe-
Peierls approximation �9�. On the other hand, the linear-
chain approximation �1� gives an exponentially vanishing
positive slope at T=0, while the interface method also pre-
dicts an exponentially vanishing value, only on the negative
side �7�. Recent real-space renormalization results �10� point
to a finite negative slope at T=0.

We use transfer-matrix �TM� methods, in connection with
finite-size scaling and conformal invariance ideas, in order to

produce a numerically accurate phase diagram for this prob-
lem. The underlying hypotheses in our work are �i� that the
phase transition is second order all along the critical line and
�ii� that it belongs to the Ising universality class. Both as-
sumptions are critically reviewed toward the end of the pa-
per, in light of the numerical results obtained while assuming
their validity.

In Sec. II, we recall the calculational methods used for the
approximate location of the critical line; the respective re-
sults are exhibited, as well as their extrapolation in the ther-
modynamic limit. In Sec. III, we analyze the data generated
in Sec. II, both in comparison with the existing literature, and
in regard to their internal consistency. The universality of
critical behavior is discussed and concluding remarks are
made.

II. METHOD AND RESULTS

We have kept Jy =1 in all calculations reported here. We
set up the TM on strips of width N sites, with periodic
boundary conditions across. Referring to Eq. �1�, three
choices of orientation are available in this case, namely, the
TM can be iterated along the F, or x direction; along the AF,
or y direction; or along the diagonal �D� of the square lattice.
As this is a weakly anisotropic system �11,12�, one would
expect estimates of, e.g., critical exponents and locations of
critical points, to converge to the same orientation-
independent limit for N�1, while finite-size corrections
should differ in each case. In order to obey the ground-state
symmetry, only even values of N are allowed for F and D,
while no such restriction applies to AF. We generally used
4�N�20; for F, we went up to N=22. This range of N
enabled the authors of Ref. �5� to locate the critical line of
the isotropic Ising antiferromagnet to very high accuracy.

A. Keeping �=1 Õ4

Following earlier work on similar problems �3,5,13�, our
finite-N estimates for the critical line are found by requiring
that the amplitude-exponent relation of conformal invariance
on strips �14� be satisfied, with the Ising decay-of-
correlations exponent �=1 /4,*sldq@if.ufrj.br
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4N�N�T,H� = 	 , �2�

where �N�T ,H�=ln�
1 /
2� is the inverse correlation length
on a strip of width N sites, with 
1, 
2 being the two largest
eigenvalues �in absolute value� of the TM.

For H�1, the solutions to Eq. �2� leave the T axis verti-
cally and are very close to each other for all three orienta-
tions of the TM. We shall briefly return to this, toward the
end of the paper. For low temperatures T�1, the main re-
gion of interest here, substantial differences arise. These are
illustrated in Fig. 1. One sees that with increasing N, all three
families of curves get closer together, though AF does so at a
slower rate. Also, in all cases their limiting shape for T
�0.4 is, with very good accuracy, a straight line going
through the exact zero-temperature fixed point at H=2. Re-
entrant behavior is clearly visible for the F curves and, to a
lesser extent, for the D ones, though in both cases the peaks
turn flatter as N increases. In order to check whether the
re-entrances vanish in the N→ limit, we plotted the se-
quences of slopes SN of the T→0 straight-line sections re-
ferred to above, against N−1.

Results are shown in Fig. 2. For both F and D, the
trend is, to an excellent approximation, SN→0 linearly
with N−1. Indeed, the respective extrapolated values are
�4�3��10−7 �F� and �−15�4��10−5 �D�, which in prac-
tice equate to zero within the present context. For AF, a large
amount of curvature is present; from a parabolic fit
�SN=S+aN−1+bN−2� of N�10 data, one gets
S=−0.029�0.004. This would correspond to
1−Hc�T� /Hc�0��0.01 at T=0.5 which, though small, is
significant.

In summary, the analysis of limiting slopes at low
T, N→, indicates that the re-entrant behavior observed for
F and D data is a finite-size effect, which tends to vanish in
the thermodynamic limit. A small discrepancy still remains
between F and D data, which are consistent with a horizontal
critical line at T→0, and AF results, which point to a slightly
negative slope in that limit.

B. Phenomenological renormalization

Further insight can be gained by relaxing the assumption
made in Eq. �2� that the phase transition belongs to the Ising

universality class and demanding only that it remain of sec-
ond order. From finite-size scaling, one gets the basic equa-
tion of the phenomenological renormalization group �PRG�
�15� for the critical line,

N�N�T,H� = N��N��T,H� , �3�

where the strip widths N and N� are to be taken as close as
possible for improved convergence of results against increas-
ing N. This means N�=N−2 for F, D, and N−1 for AF.

We found that PRG results converge very rapidly for both
F and D orientations of the TM, without any sign of the
re-entrances shown by the solutions of Eq. �2�. For the F
case, the largest discrepancies between N=6 and 8 amount to
0.8% close to H=0 and are slowly reduced upon increasing
H; around T�0.7, H�1.97, the two curves differ by 0.04%.
At T=0.4, both coincide to within two parts in 105, at less
than 0.1% of H=2, and then home in toward �T ,H�= �0,2�
on a straight line. The discrepancy between N=12 and 14 is
never more than one part in 104 for T�1. The picture is
quantitatively similar for the D orientation.

On the other hand, for PRG with the TM along the AF
direction, one gets relatively large negative slopes �but ap-
proaching zero with increasing N� as T→0. Furthermore, at
intermediate temperatures 0.4�T�0.8 the curves show in-
flection points, which make extrapolation of such sections to
N→ prone to instabilities.

The above-mentioned features are illustrated in Fig. 3.
We investigated the behavior of the limiting slopes for the
AF family against 1 /N, with results displayed in Fig. 4. The
line shown in the figure is a parabolic fit to data
�SN=S+aN−1+bN−2�, from which one gets �S��10−3, i.e.,
essentially zero.

C. Extrapolations

In this section, we deal directly with extrapolations of
finite-size data for all �T ,H�. This is in contrast to the analy-
sis of slopes, which applies only at low T, where the finite-N
data actually fall on straight lines.

FIG. 1. �Color online� Low-temperature approximate critical
boundaries given by solutions of Eq. �2�. Triangles, squares, and
hexagons denote, respectively, TM along F, AF, and D directions.
Empty symbols: N=4; full symbols: N=22 �F�, 20 �D and AF�.

FIG. 2. �Color online� Slopes SN of the low-temperature
straight-line sections of approximate critical boundaries given by
solutions of Eq. �2�, against 1 /N. Triangles, squares, and hexagons
denote, respectively, TM along F, AF, and D directions. For AF, data
are scaled by a factor of 5. Lines are fits to data: linear for F and D
�all N� and parabolic �linear plus quadratic� for AF �N�10 only�.

S. L. A. DE QUEIROZ PHYSICAL REVIEW E 80, 041125 �2009�

041125-2



Extensive investigation of the related problem of isotropic
Ising antiferromagnets in a field �3� shows that, in that case,
the main irrelevant exponent is yir=−2, i.e., the leading cor-
rections to scaling are expected to depend on N−2. Thus, it is
plausible to assume that such corrections also play a domi-
nant role here. However, the analysis of slopes above sug-
gests that corrections in N−1 are present as well, at least in
the low-temperature region.

In what follows, we examine both scenarios, i.e., yir=−1
and −2. The locations of points on the approximate critical
line, for strip width N, are denoted by �TN

� ,HN
� �. On account

of the overall shape of the phase diagram, we extrapolate
against negative powers of N in two different ways: �i� at
constant X=H for high T�1.7 and �ii� at constant X=T for
T�1.7. For large N, we fit YN �=TN

� �H� in �i�, or HN
� �T� in

�ii�� to a form

YN
� �X� = Yext�X� + ayir

�X�Nyir + byir
�X�N2yir. �4�

We have chosen to calculate Yext�X�, ayir
�X�, and byir

�X� from
the three largest values of N available for each strip orienta-

tion; thus, error bars �other than those associated to the po-
sitions YN

� �X� themselves� are not available from this proce-
dure.

We managed to produce well-behaved extrapolated criti-
cal lines from the solutions to Eq. �2�, only for F and D
orientations of the TM. For AF, though extrapolations are
generally smooth for T�0.6, they display instabilities for
lower T, i.e., the section of the phase diagram which is most
relevant in the search for re-entrant behavior. With regard to
PRG curves, due to the fast convergence of F and D data, we
found that N=14 data can already be taken as very close to
the N→ limit, to within an estimated one part in 104. As
mentioned above, the extrapolated PRG curves for AF dis-
play instabilities, except for very low T �for which the rel-
evant information is summarized in the slope analysis illus-
trated in Fig. 4�.

Figure 5 shows the low-temperature regions of extrapo-
lated critical boundaries, for F and D, assuming yir=−1 or −2
in Eq. �4�. For both curves corresponding to yir=−1, there is
a rather flat section: for F, points with T�0.36 remain within
one part in 105 from H=2, while for D the T�0.35 region is
within one part in 104 from that limit. On the other hand, the
yir=−2 extrapolations exhibit tiny re-entrances, with
maxima, respectively, at H=2.0024 �F� and H=2.0012 �D�.

In order to get further insight into the competing scenarios
under investigation, we examine the behavior of the coeffi-
cients a−1 and b−1 of Eq. �4� along the critical line. Indeed,
this amounts to an unbiased test of whether the dominant N
dependence of finite-size data is on N−1 �via a−1� or N−2 �via
b−1�. In Fig. 6, one sees that, at low T, the N−2 terms tend to
vanish for both F and D cases. Furthermore, the inset of the
figure shows that in the low-field limit, it is the N−2 correc-
tions that become dominant, and those in N−1 become negli-
gible as H→0, as is well known for the zero-field Ising
model �3,16�. The latter result gives further credence to the
procedure just described and thus to the conclusions reached
regarding the low-T regime.

Finally, we found no clear evidence that an exponent
yvac=−4 /3, associated to vacancy excitations, might be
present �3�. This is because �i� the F and D data clearly

FIG. 3. �Color online� Low-temperature approximate critical
boundaries given by solutions of Eq. �3�. Triangles: TM along F
direction, N=14; hexagons: D, N=14; empty squares, crosses, and
full squares all for AF, respectively, N=10, 12, and 14.

FIG. 4. �Color online� Slopes SN of the low-temperature
straight-line sections of approximate critical boundaries given by
the solution of Eq. �3�, for TM in the AF direction, against 1 /N.
Data points are for N=5–14. The line is a parabolic �linear plus
quadratic� fit to data.

FIG. 5. �Color online� Low-temperature extrapolated critical
boundaries obtained via Eq. �4�, with yir=−2 �empty symbols�, and
yir=−1 �full symbols�. TM is in the F direction in �a� and along the
diagonal �D� in �b�.
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depend predominantly on N−1 at low T, as already shown in
the slope analysis, and �ii� the slope data for AF do not
exhibit any significant improvement in quality of fit when
plotted against N−4/3 �compared to the parabolic fits in N−1 of
Figs. 2 and 4�.

III. DISCUSSION AND CONCLUSIONS

We begin by recalling that Eq. �3� depends on the exis-
tence of an underlying diverging correlation length; thus, its
nontrivial fixed points correspond to a second-order transi-
tion. We only failed to find such points for low temperatures,
generally, T�0.2. This is due to the extremely slow conver-
gence of numerical results connected to the very large ratio
between positive and negative exponentials, which are the
TM states’ Boltzmann weights in that region. If a tricritical
point were present, separating first- and second-order sec-
tions of the critical curve, one would expect spurious effects,
such as the “hooking,” found for the three-dimensional ver-
sion of the current problem �17�. On the contrary, as long as
we can find low-T solutions to Eq. �3�, they behave in the
expected manner, i.e., homing in toward the exact T=0 fixed
point at H=2. Furthermore, the extrapolated �=1 /4 curves
agree very well with the solutions of Eq. �3� down to
T=0.2 and still extend somewhat further down to T	0.1.
Since, by conformal invariance, �=1 /4 corresponds to an
Ising transition, our results indicate that this is the character
of the critical line, at least down to T=0.1. Therefore, if a
tricritical point is present, it must be located at T�0.1,
H	2. We thus conclude that the transition is indeed of sec-
ond order and in the Ising universality class along the whole
of the critical curve �except for the latter possibility, which
we are not able to probe directly�.

We now recall that the re-entrant behavior predicted in
Ref. �8� is sizable: in the units used in the present work, it
translates into the critical line leaving �T ,H�= �0,2� with a

slope S= �1 /2�ln 2=0.3466. . . �see their Eq. �31��. This is in
contrast with the results of Sec. II C, where we find at most
S=7�10−3 �with the TM in the F direction, using yir=−2�.

In the comparable problem of isotropic antiferromagnets,
though the critical line Hc�T� given in Ref. �6� does not ex-
hibit re-entrances, it is always above that found in Refs. �4,5�
�except at the T=0 and H=0 ends, where both lines coin-
cide�. The maximum discrepancy, of order 4%, is in the cen-
tral region 0.7�T�1.5, tailing off toward both ends. It thus
appears that the methods employed in Refs. �6,8� generally
tend to overestimate the extent of the ordered region in pa-
rameter space.

Though the present problem is weakly anisotropic in a
broad sense, the distinct nature of spin couplings along each
coordinate axis is responsible for the introduction of subtle
biases, when one iterates the TM along either of those very
same axes. Indeed, the size of the ordered region predicted
by low-T TM results systematically decreases as one changes
orientation from F to D and finally to AF. The explanation is
that for the high fields near the critical curve, the ferromag-
netic correlations picked out when the TM goes along F tend
to be emphasized; when the TM goes along AF, the corre-
sponding antiferromagnetic correlations are inhibited by the
field. The small negative extrapolated slope of the AF curves
shown in Fig. 2 most likely reflects the latter effect. For the
TM going along D, an evenly balanced mixture of both kinds
of correlations is collected upon its iteration. Therefore, we
believe that of the three setups implemented here, the latter is
the one likely to produce the most reliable results.

Note also that for PRG, one is always comparing correla-
tion lengths evaluated along the same lattice direction in Eq.
�3�, so the aforementioned biases tend to cancel out, if
present. Thus, �i� the PRG curves for F and D do not show
re-entrances, even for finite N, and �ii� the slope of PRG
curves for AF approaches zero as N−1→0 �see Fig. 4�, as
opposed to the small negative value found for the corre-
sponding solutions of Eq. �2�.

In principle, the results for F, D, and AF orientations must
eventually extrapolate to the same location of the critical
boundary as N→. The way finite-N data vary as N in-
creases is consistent with this �see Figs. 1 and 3�. However, it
is apparent that subdominant corrections to scaling have
much larger amplitude for AF than for F or D. Attempting a
theoretical understanding of why this is so usually becomes a
highly nontrivial task, as it involves �i� unequivocally iden-
tifying the associated irrelevant exponents, and �ii� once this
is done, analyzing the �nonuniversal� amplitudes of the cor-
responding terms. Examples of this can be seen in Refs.
�3,16�. Here, for practical reasons we chose to extrapolate
only the sets of �T ,H� data for which the small subdominant
corrections could be satisfactorily dealt with via Eq. �4� and
its underlying assumptions.

We have found that the minimum amount of discrepancy
among all our results corresponds to the set of �i� extrapo-
lated data from the solutions of Eq. �2�, with the TM along
D, using yir=−1; �ii� PRG with the TM along D; and �iii�
PRG with the TM along F �see Fig. 7�. The extrapolations
from the solutions of Eq. �2�, with the TM along F, and using
yir=−1, also agree very well with these, except for the low-
temperature “shoulder,” where curves begin to depart more

FIG. 6. �Color online� Low-temperature behavior of fitting co-
efficients a−1 �empty symbols� and b−1 �full symbols� of Eq. �4�.
Triangles: TM along F direction. Hexagons: TM along diagonal �d�.
Inset: high-temperature behavior. Same axis labels and symbol cap-
tions as in main figure �see text�.
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significantly from the horizontal line H=2. This is illustrated
in the inset of Fig. 7.

In order to check on the universality of critical properties,
we examined the thermal exponent yT=1 /� along the critical
line. Considering two strips of widths M and N, finite-size
scaling �15� gives

yT = 1 +
ln��N� /�M� �
ln�M/N�

, �5�

where �N� , �M� are derivatives of the inverse correlation
lengths, taken with respect to the appropriate temperaturelike
scaling field, evaluated on the critical curve. With the TM
along D and using M =N−2, we swept the extrapolated line
shown in Fig. 7. For simplicity, the temperaturelike direction
was taken as the temperature axis for low and middle fields
H�1.41 �corresponding to 1.74�T�2.269. . .� and as the H
axis for the remainder of the critical line. The resulting so-
lutions to Eq. �5�, for N=10, 12, and 14, are shown in Fig. 8.
Although the abrupt jump at T	1.74 is an artifact, reflecting
the above-mentioned �and somewhat arbitrary� change in the
assumed scaling direction, one sees that on both sides of the
discontinuity the estimates are rather close to the Ising value
yT=1 and systematically approach it with increasing N. On
the other hand, for T�0.5 �where H already differs by less
than 0.5% from the zero-temperature Hc�0�=2�, crossover
effects related to the energy-level crossings at T=0 cause an
extreme deterioration in our estimates.

Near the H=0 extreme of the critical curve, we have fitted
our extrapolated curves to a parabolic shape,

Tc�H� = Tc�0� − aH2, �6�

from which we get a=0.217�0.001, to be compared with
a=0.1767. . . and a=0.3018. . ., each coming from a slightly
different implementation of the interface method �7�. Note
that the coefficient of a hypothetical linear term in Eq. �6�
vanishes identically because the phase diagram is symmetric
under field inversion, thus, the scaling variable must depend
on H2. For H→0, this means that Tc�H�=Tc�0�−aH2 plus
higher-order terms �18�.

Finally, we return to the exponentially vanishing devia-
tions from a horizontal line near T=0 predicted in earlier
work and mentioned in the introduction. These are of the
general form �7�

H = 2 + cTx exp�− d/T� , �7�

where c�0 for both implementations of the interface
method �7�, as well as for a free-fermion approximation �7�,
whereas c�0 for the linear-chain approximation �1,7� ��c�, d,
and x turn out to be on the order of unity in all cases�. While
we do not have enough accuracy at low temperatures to
probe for this sort of effect, it seems safe to state that any
stronger deviations from the horizontal, be they in the shape
of a re-entrance or the opposite, are ruled out by our results.

Our extrapolated data for the location of the critical line,
for both F and D, with yir=−1 and −2, are available as ASCII
files �19�.
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FIG. 7. �Color online� General view of extrapolated phase dia-
gram. Full line is an extrapolation of solutions of Eq. �2�, with the
TM along D, using yir=−1. Points: PRG, N=14, with the TM along
F �triangles� and D �hexagons�. Inset: low-temperature section of
same data. Same axis labels and symbol captions as in main figure,
except for additional dashed line, which is an extrapolation of so-
lutions of Eq. �2�, with the TM along F, using yir=−1.

FIG. 8. �Color online� Thermal scaling exponent yT=1 /� along
extrapolated critical line shown in Fig. 7 calculated via Eq. �5�, with
M =N−2. TM along D. The discontinuity at T	1.74 marks the
change in assumed scaling direction �see text�.
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